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The task of monitoring success and failure in
inherently difficult, as domains need not provide any exter.
nal metric that can be used to measure performance. Past
work on monitoring “progress” allstrive to identify and mea-
sure success, but none attempt to identify failures. We sug-
gest that this limitation is due to the common reliance on a
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We
‘examine five known coevolutionary behaviors here, which are labeled as
follows in the figures below: arms-race dynamics, lock-in falure, variation,

(BOG) memory and pro-
posean allemale all-of-generation” (AOG) echanism free
of this limitation. Using AOG data, we propose a popular
ion-di ial method for ar-

and Pollack in [10].

All-of-Generation Technique

bitrary domains. With this method, we demonnrale the
ability to profile and distinguish an assortment of coevolu-
tionary successes and coevolutionary failures, includin
arms-race dynamics, disengagement, cycling, forgetting,
and relativism.
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introduced. We simply average the numeric
results of evaluating all candids inst all tests.

it can provide rich feedback about successes and failures over any
coevolutionary domain. This feedback can be used both to refine varia-

tions in to controlling
coevolution in novel domains.
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Reducing Complexity of AOG Analysis
Clearly. i
complexity of evaluation. Assuming population sizes remain constant (at
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This rganizatin of data s valuable in making apparent the Red Queen
effect: values drawn from evaluations along the table's diagonal. Graphs
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subset of entries, and base analysis on only this
data. While we will not address the issue of opti.
mally specifying “representative subset” here, we

do provide examples of simple example subsets.
We view this as a memory-maintenance operation:
At each generation, we can decide whether or not
to add the newest generation to the generational
“memory,” and whether or not to

the Red Queen effect. Generation table values are only comparable if ei-
ther the candidate or the testis kept constant,
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Lossless Memory - The AOG techniques described
above are “lossless"” by default. All generations in
a simulation are added to the generation table,

g°ICIIT] evaluations for the analysis.
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