
A Population-Differential Method of Moni
Ari Bader-Natal and Jordan B. Pollack. DEMO Lab

Dept. of Computer Science, Brandeis University, Waltham, MA 02454

The task of monitoring success and failure in coevolution is
inherently difficult, as domains need not provide any exter-
nal metric that can be used to measure performance. Past
work on monitoring “progress” all strive to identify and mea-
sure success, but none attempt to identify failures. We sug-
gest that this limitation is due to the common reliance on a
“best-of-generation” (BOG) memory mechanism, and pro-
pose an alternate “all-of-generation” (AOG) mechanism free
of this limitation. Using AOG data, we propose a popula-
tion-differential method for monitoring coevolution in ar-
bitrary domains. With this method, we demonstrate the
ability to profile and distinguish an assortment of coevolu-
tionary successes and coevolutionary failures, including
arms-race dynamics, disengagement, cycling, forgetting,
and relativism.

Coevolution requires no domain-specific notion of objective fitness, en-
abling coevolutionary algorithms to learn in domains for which no objec-
tive metric is known or for which known metrics are too expensive. But this
benefit comes at the expense of accountability, as there is consequently no
external metric with which to measure an algorithm's performance. Sev-
eral counter-productive behaviors have been identified in the literature
using simple but measurable domains such as the numbers game, intro-
duced by Watson and Pollack in [10]. After reviewing existing best-of-gen-
eration (BOG) coevolutionary monitoring techniques, we present an all-of-
generation (AOG) alternative. Upon this framework we develop a new
method called population-differential analysis and demonstrate that
it can provide rich feedback about successes and failures over any
coevolutionary domain. This feedback can be used both to refine varia-
tions in algorithms and to automate ways of controlling parameters for
coevolution in novel domains.

Best-of-Generation Techniques
Analysis based on generation tables was first introduced in coevolution by
Cliff and Miller, and has been pursued further by others, including Floreano
and Nolfi, and Stanley and Mikkulainen [3,6,9]. Rosin and Belew later in-
corporated BOG data into the selection mechanism, in Hall of Fame [7].
A generation table assigns the table rows to the first population's
sequence of generations, and assigns table columns to successive
generations of the second population. Internal table entries contain the
results of evaluating the combination of the corresponding row and col-
umn generations. For data visualization, Cliff and Miller turn their tables
into bitmap images (one pixel per table entry), and we visualize tables
similarly.
This organization of data is valuable in making apparent the Red Queen
effect: values drawn from evaluations along the table's diagonal. Graphs
displaying this instantaneous fitness over time are excellent illustrations of
the Red Queen effect. Generation table values are only comparable if ei-
ther the candidate or the test is kept constant.

Best-of-Generation Criticism
As Ficici and Pollack note in [5], because of the history of single-objective
fitness measurements, almost all approaches in the literature (including
those cited above) concern themselves solely with the "best-of-generation"
(BOG) member of each population. No other individuals are retained for
analysis. This BOG approach appears particularly limitingfor two reasons:
First, results of an analysis can vary with the definition of best popu-
lation member. [3,6,9] all adopt the Last Elite Opponent criterion proposed
by Sims in [8], but it should be noted that any number of alternate defini-

tions may be equally plausible. Indeed, the coevolutionary algorithm un-
der examination may itself define best differently. Pareto coevolution, for
example, would define best as the subset of individuals along the Pareto
front. Second, while BOG-based analysis may give insight into algo-
rithmic dynamics of the highly-successful individuals, it provides little
about the population as a whole. While no claims were made about these
monitors regarding sensitivity to failure, it ought to be noted that these
BOG techniques are not sufficient to detect the common coevolutionary
failures detailed by Watson and Pollack in [10].

All-of-Generation Technique
We introduce an alternative that addresses the shortcomings of BOG-based
methods in monitoring failure based upon all-of-generation (AOG) data
evaluation. For the sake of generality, the technique presented here is de-
signed for simulations involving two asymmetric populations, but it is
equally applicable to symmetric two-population simulations and to single-
population simulations (via partitioning.) Adopting terminology from [2],
we refer to these as populations of candidates and tests. In order to mini-
mize domain-specificity, the result of a candidate-test pairing is simply one
element of the ordered set R = {candidate-failed-test < candidate-tied-test <
candidate-passed-test}, as in [2].

Population-Grained Evaluation
Where an entry in Cliff and Miller's generation table is the result of evalu-
ating the "best" candidate against the "best" test for the specified genera-
tions, an entry in an AOG-based generation table must somehow represent
the result of evaluating all candidates against all tests for the specified gen-
erations. Where individual-grained evaluation is well-defined, population-
grained evaluation must be introduced. We simply average the numeric
results of evaluating all candidates against all tests.

Reducing Complexity of AOG Analysis
Clearly this change from BOG- to AOG-analysis increases the computational
complexity of evaluation. Assuming population sizes remain constant (at
|C| candidates and |T| tests per population), a g-generation simulation
can be described as follows: a simple BOG analysis requires g2+g|C|+g|T|
evaluations, while a simple AOG-based analysis requires g2|C||T| evalua-
tions. Much of the computational burden of analysis can be allevi-
ated by implementing a memory policy.

One can restrict computation to a representative
subset of entries, and base analysis on only this
data. While we will not address the issue of opti-
mally specifying “representative subset” here, we
do provide examples of simple example subsets.
We view this as a memory-maintenance operation:
At each generation, we can decide whether or not
to add the newest generation to the generational
“memory,” and whether or not to eliminate any-
thing from the memory. We then evaluate with re-
spect to memories. The following were suggested
in [3]:
Lossless Memory - The AOG techniques described
above are “lossless” by default. All generations in
a simulation are added to the generation table,
and they are actively evaluated for every genera-
tion of the simulation. This memory policy requires
g2|C||T| evaluations for the analysis.
Sliding-Window Memory - By implementing the
memory as a fixed-size FIFO queue, the size of the
memory can be easily bounded. The size of the
bounds can vary behavior from that of lossless
memory to that of no memory at all; between ac-
curacy and efficiency. Given window bound b<g,
(2bg-b2)|C||T| evaluations are required.
Sampled Memory - If only every jth generation is
added to the memory, computation is reduced by
a factor of j2, to (g/j)2|C||T| evaluations. Sampling
can be used in conjunction with a sliding-window,
requiring (2b(g/j)-b2)|C||T| evaluations.

toring Success and Failure in Coevolution

Arms-race dynamics.
Pareto hill-climbing algorithm [1] on com-
pare-on-one numbers game [4] domain.

Lock-in failure.
Fitness-proportional coevolutionary algo-
rithm on intransitive numbers game domain.

Variation.
Fitness-proportional coevolutionary algo-
rithm on intransitive numbers game domain.

Disengagement.
Fitness-proportional coevolutionary algo-
rithm on intransitive numbers game domain.

Population-Differential Analysis
Next we construct a perfomance measure based on the data available in
the memory. Nolfi and Floreano addressed this by averaging data per gen-
eration [6], but this makes most trends less apparent (e.g. intransitive cy-
cling.) As an alternative, we compare the current population to the
oldest population in memory as an indicator of directionality of
change over time. See Tech. Report for details.
The candidate-population performance at generation i is defined to be the
average of the population comparators between the newest (ith) candidate
population and the oldest candidate population currently in the memory,
with respect to all test populations currently in memory. (The test-popluation
performance measure is defined similarly.)
By restricting interest to the far reaches of the memory, a population-dif-
ferential analysis does not reward or penalize for localized variability. The
only change that is of interest is that between the population's ancestry
and its current state. Additionally, this keeps the computational complex-
ity of calculating performance low. (For a memory of size n, only 2n com-
parisons need to be calculated.) Intuitively, these performance measures
reflect the directionality of change over available memory.

Experiments
In order to demonstrate the value of the population-differential perfor-
mance monitor, the first four experiments presented use numbers game
variants as a domain. In these games, tests and candidates are each a point

on a two-dimensional grid. Mutation simply moves an individual to a nearby
location. Evaluation of candidate-test pairs varies by game variant, and de-
tails are included in [10]. These domains are trivially simple and, more im-
portantly, offer an acceptable external metric that can be used to support
or challenge the PC-Performance monitor. The fifth experiment uses the
Rock-Paper-Scissors game as a domain, showing that the performance moni-
tor can provide useful insight into games with no such external metric. We
examine five known coevolutionary behaviors here, which are labeled as
follows in the figures below: arms-race dynamics, lock-in failure, variation,
disengagement, and cycling.

Cycling.
Proportional coevolutionary algorithm (top
left and above) and Pareto hill-climbing
algorithm (top right) on rock-paper-scissors
domain.

Window size affects performance analysis.
AOG data for one simulation is shown with two different window sizes. Performance analysis of
the two sets of data will likely drastically differ.

In John R. Koza, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, editors, Genetic Program-
ming 1997: Proceedings of the Second Annual
Conference, pages 398-406, Stanford Univer-
sity, CA, USA, 13-16 1997. Morgan Kaufmann.
7. Christopher D. Rosin and Richard K. Belew.
New methods for competitive coevolution.
Evolutionary Computation, 5(1):1-29, 1997.
8. Karl Sims. Evolving 3d morphology and be-
havior by competition. In Rodney A. Brooks
and Pattie Maes, editors, Proceedings of the 4th
International Workshop on the Synthesis and
Simulation of Living Systems, pages 28-39, Cam-
bridge, MA, USA, 7 1994. MIT Press.
9. Kenneth O. Stanley and Risto Miikkulainen.
The dominance tournament method of moni-
toring progress in coevolution. In Alwyn M.
Barry, editor, GECCO 2002: Proceedings of the
Bird of a Feather Workshops, pages 242-248,
New York, 8 2002. AAAI.
10. R. A. Watson and J. B. Pollack. Coevolution-
ary dynamics in a minimal substrate. In Lee
Spector, et. al, editors, Proceedings of the 2001
Genetic and Evolutionary Computation Confer-
ence. Morgan Kaufmann, 2001.

References
1. Anthony Bucci and Jordan B. Pollack. Focusing versus intransitivity: Geometrical aspects of coevo-
lution. E. Cantú-Paz, et. al, editors, GECCO-2003, volume 2723 LNCS, pages 250-261. Springer, 2003.
2. Anthony Bucci and Jordan B. Pollack. A mathematical framework for the study of coevolution. In
Kenneth A. De Jong, Riccardo Poli, and Jonathan E. Rowe, editors, Foundations of Genetic Algorithms 7,
pages 221-235. Morgan Kaufmann, San Francisco, 2003.
3. D. Cliff and G. F. Miller. Tracking the red queen : Measurements of adaptive progress in co-evolu-
tionary simulations. Lecture Notes in Computer Science, 929:200-218, 1995.
4 Edwin D. de Jong and Jordan B. Pollack. Learning the ideal evaluation function. E. Cantú-Paz, et. al,
editors, GECCO-2003, volume 2723 of LNCS, pages 274-285, Chicago, 12-16 2003. Springer-Verlag.
5. Sevan G. Ficici and Jordan B. Pollack. A game-theoretic memory mechanism for coevolution. In
E. Cantú-Paz, et. al, editors, GECCO-2003, volume 2723 of LNCS, pages 286-297, Chicago, 12-16 2003.
Springer-Verlag.
6. Dario Floreano and Stefano Nolfi. God save the red queen! competition in co-evolutionary robotics.

