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Abstract. The task of monitoring success and failure in coevolution is
inherently difficult, as domains need not have any external metric to mea-
sure performance. Past work on monitoring “progress” all strive to iden-
tify and measure success, but none attempt to identify failure. We sug-
gest that this limitation is due to the reliance on a “best-of-generation”
(BOG) memory mechanism, and propose an alternate “all-of-generation”
(AOG) mechanism free of this limitation. Using AOG data, we propose
a population-differential method for monitoring coevolution in arbitrary
domains. With this method, we demonstrate the ability to profile and dis-
tinguish an assortment of coevolutionary successes and failures, including
arms-race dynamics, disengagement, cycling, forgetting, and relativism.

1 Introduction

Coevolution requires no domain-specific notion of objective fitness, enabling co-
evolutionary algorithms to learn in domains for which no objective metric is
known or for which known metrics are too expensive. But this benefit comes at
the expense of accountability, as there is consequently no external metric with
which to measure an algorithm’s performance. Several counter-productive behav-
iors have been identified in the literature using simple but measurable domains
such as the numbers game, introduced by Watson and Pollack in [10]. While such
domains offer opportunities for algorithmic auditing, similar feedback cannot be
obtained from an arbitrary coevolutionary domain.

After reviewing existing BOG monitoring techniques (including Cliff and
Miller’s CIAO data [3], Nolfi and Floreano’s Masters Tournament [6], and Stan-
ley and Miikkulainen’s Dominance Tournament [9]), we present an AOG alter-
native. Upon this framework we develop a method called population-differential

analysis, and demonstrate that it can provide rich feedback about coevolution-
ary successes and failures. This feedback can be used both to refine variations
in algorithms and to automate ways of controlling parameters for coevolution in
novel domains.
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2 Related Work: Best-of-Generation Techniques

Analysis based on generation tables was first introduced in coevolution by Cliff
and Miller, and has been pursued further by others, including Floreano and
Nolfi, and Stanley and Mikkulainen [6,9,3].1 In dual-population coevolution,2

a generation table assigns the table rows to the first population’s sequence of
generations, and assigns table columns to successive generations of the second
population. Internal table entries contain the results of evaluating the combina-
tion of the corresponding row and column generations. For data visualization,
Cliff and Miller turn their tables into bitmap images (one pixel per table entry),
and we follow their pixel-per-entry example with grayscale-maps.

This organization of data is valuable in making apparent the Red Queen
effect: values drawn from evaluations along the table’s diagonal3 are simply in-
comparable to one another. Graphs displaying this instantaneous fitness over
time are excellent illustrations of the Red Queen effect (see Fig. 1.) Generation
table values are only comparable if either the candidate or the test is kept con-
stant. For example, if one knows how a candidate at time t performs against
some test T and one knows how the candidate at time t + 1 performs against
that same test, comparing the results may provide an indication of progress over
time. If the second candidate were evaluated against something other than T ,
however, the comparison of results could no longer claim to be a valid indicator
of progress.4

Best-Case Random Worst-Case

Fig. 1. An interpretation of the Red Queen effect with respect to generational tables.
Three examples of dramatically different performance that correspond to the same
instantaneous fitness graph. (with data taken from the diagonal.) In these images, as
in all subsequent generation table images, candidate generations progress from top
to bottom, and test generations progress from left to right. Each enlarged “pixel”
represents some evaluation of the two corresponding row and column generations.

1 Rosin and Belew later incorporated information from generation tables into the
selection mechanism, in their Hall of Fame concept.[7]

2 Specifically, one population is considered candidates and the other population is
considered tests, following from Bucci and Pollack in [2].

3 Specifically, the diagonal for which the ith candidate generation is evaluated using
the ith test generation.

4 Note that the Master Tournament [6] respects value comparability by restricting ag-
gregations to within rows and or within columns. The Master Tournament attributes
the summation of each row and column of a given generation as that generation’s
subjective fitness.



As Ficici and Pollack note in [5], because of the history of single-objective fit-
ness measurements, almost all approaches in the literature (including those cited
above) concern themselves solely with the “best-of-generation” (BOG) member
of each population. No other individuals are retained for analysis. This BOG
approach appears particularly problematic for two reasons. First, results of an
analysis can vary with the definition of “best” population member. [3,6,9] all
adopt the Last Elite Opponent5 criterion proposed by Sims in [8], but it should
be noted that any number of alternate definitions may be equally plausible. In-
deed, the coevolutionary algorithm under examination may itself define “best”
differently.6 Second, while BOG-based analysis may give insight into algorithmic
dynamics of the highly-successful individuals, it provides little about the popu-
lation as a whole. While no claims were made about these monitors regarding
sensitivity to failure, it ought to be noted that these BOG techniques are not
sufficient to detect the common coevolutionary failures detailed by Watson and
Pollack in [10].

3 All-of-Generation Technique

We introduce an alternative that addresses the shortcomings of BOG-based
methods in monitoring failure based upon all-of-generation (AOG) data eval-
uation. For the sake of generality, the technique presented here is designed for
simulations involving two asymmetric populations, but it is equally applicable to
symmetric two-population simulations and to single-population simulations (via
partitioning.) Adopting terminology from [2], we refer to these as populations
of candidates and tests. This choice, over common alternatives such as “learners
and teachers” or of simply “population A and population B,” is meant to draw
attention to the type of feedback resulting from evaluating a pair of elements. In
order to minimize domain-specificity, the result of a candidate-test pairing is sim-
ply one element of the ordered set R = {candidate-failed-test ¡ candidate-tied-test

¡ candidate-passed-test}, as in [2].

3.1 Population-Grained Evaluation

Where an entry in Cliff and Miller’s generation table is the result of evaluating
the “best” candidate against the “best” test for the specified generations, an
entry in an AOG-based generation table must somehow represent the result of
evaluating all candidates against all tests for the specified generations. Where
individual-grained evaluation is well-defined, population-grained evaluation must
be introduced. A linear combination is implemented here. We simply average the
numeric results of evaluating all candidates against all tests:

5 An individual is defined to be the “best” of its generation if it outperforms its peers
when pitted against the “best” member of the previous opponent generation.

6 Pareto coevolution, for example, would define “best” as the subset of individuals
along the Pareto front.



Definition 1. PopEval(Ci, Tj) =

∑

c∈Ci

∑

t∈Tj

eval(c,t)

|Ci||Tj |

where Ci is the generation ith-generation candidate population and Tj is the
jth-generation test population. Numeric values result from implementing the
ordered set R = {−1 < 0 < 1}. This results in scalar values between -1.0 (if all
candidates fail all tests) to 1.0 (if all candidates pass all tests.)

3.2 Computational Complexity of AOG Analysis

Clearly this change from BOG- to AOG-analysis increases the computational
complexity of evaluation. Assuming population sizes remain constant (at |C| can-
didates and |T | tests per population), a g-generation simulation can be described
as follows: a simple BOG analysis requires g2 + g|C|+ g|T | evaluations7 (where
the second and third terms are the cost of computing the Last Elite Opponent),
while a simple AOG-based analysis requires g2|C||T | evaluations. Fortunately,
much of the additional computational burden of switching from BOG to AOG
analysis can be alleviated by implementing a memory-maintenance policy.

3.3 Reducing Complexity with Memory Policies

Rather than computing every table entry in the generation table, one can re-
strict computation to a representative subset of entries, and base analysis on
only this data. While we will not address the issue of optimally specifying “rep-
resentative subset” here, we do provide examples of simple example subsets.
Populating a generation table, as described above, involves evaluating all pre-
vious generations of one population against the current generation of the other
population, and vice versa. This can be recast as a memory-maintenance oper-
ation: At each generation, add the new test population to a test-memory, add
the new candidate population to a candidate-memory, and remove nothing from
either memory. Then evaluate the new candidate population against everything
in the test-memory and evaluate the new test population against everything in
the candidate-memory. Viewed as a “lossless” memory policy, the full generation
table is defined simply: add each new generation and never remove any old gen-
erations. Two simple memory policies8 are presented below, and are illustrated
in Fig. 2.9

7 Recall that one evaluation takes one candidate and one test, and returns one element
from set R = {candidate-failed-test ¡ candidate-tied-test ¡ candidate-passed-test}.

8 These alternative policies were suggested in [3].
9 The memory mechanisms described here are simply tasked with determining when

to add and remove generations from accessibility. There is no goal here to collect
the “best” elements, as in the memory mechanisms detailed in [5].



Lossless Memory The AOG techniques described above are “lossless” by de-
fault. All generations in a simulation are added to the generation table, and
they are actively evaluated for every generation of the simulation. This is im-
plemented as a list, to which each new generations is appended, in turn. This
memory policy, as stated in Sec. 3.2, requires g2|C||T | evaluations for the anal-
ysis.

Sliding-Window Memory By implementing the memory as a fixed-size FIFO
queue, the size of the memory can be easily bounded. At one extreme, when the
queue-size is set to the number of generations in the simulation, this memory is
equivalent to the lossless memory policy described above. At the other extreme,
a queue of size 1 effectively eliminates the notion of memory entirely, and the
computation required is limited to that of the algorithm itself. In between lies a
spectrum of tradeoff between accuracy and efficiency. Fig. 3 illustrates how an
overly-restrictive memory size could severely impair the value of the analysis. A
sliding-window memory, given window bound b < g, requires (2bg − b2)|C||T |
evaluations.

Sampled Memory Dramatic computational savings can be achieved by selec-
tively adding populations to memory. If only every jthgeneration is added to the
memory, computation is reduced by a factor of j2, to (g/j)2|C||T | evaluations.
For further savings, sampling can be used in conjunction with the sliding-window
described above, requiring only (2b(g/j) − b2)|C||T | evaluations.

Concept-Specific Memory The population-differential monitor can simulate
a Dominance Tournament simply by implementing a memory policy as follows:
If the best individual (with respect to the Last Elite Opponent) of the current
generation beats all members of the other population currently in memory, add
that individual to the memory. At the end of the simulation, the individuals in
memory are the sequence of dominant strategies that were generated.10

4 Population-Differential Analysis

Next we construct a perfomance measure based on the data available in the
memory. Nolfi and Floreano addressed this by averaging data per generation [6],
but this makes most trends less apparent. The cycling problem associated with
games with intransitivities, is an example of one such trend. As an alternative,
we propose a comparison between the population in question and the oldest
population in memory as a better indicator. The population comparator (PC) is
defined conditionally:

10 While it is not generally interesting that concept-specific memory policies can be
developed that coerce the population-differential monitor to perform other tasks, the
ability to easily simulate the Dominance Tournament allows for better understanding
similarities and differences between the two approaches.



Lossless Memory

Representative subset

Data available from final
memory contents

Bounded Memory
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Fig. 2. Illustration of three memory maintenance policy implementations. The top
images display the policy-specific subset of the generation table, and the bottom image
displays evaluations based only on the memory contents at the final generation of the
simulation. This simulation is from a Pareto hill-climbing algorithm attempting the
Compare-on-One variant of the numbers game, introduced in [4]. (A hill-climber in
which candidate selection is based on Pareto dominance and test selection is based on
informativeness, as defined by Bucci and Pollack in [2].)

50-generation bounded memory 300-generation bounded memory

Fig. 3. Increasing the sliding-window size b may reveal behavior that was not appar-
ent with the shallower memory. These images were drawn from a fitness-proportional
coevolutionary algorithm attempting Watson and Pollack’s intransitive numbers game.

The 300-generation memory image shows that the 50-generation memory is not suffi-
cient to derive a representative subset of AOG data for this simulation.



Definition 2. PCTk
(Ci, Cj) =







1, if PopEval(Ci, Tk) > PopEval(Cj , Tk)
0, if PopEval(Ci, Tk) = PopEval(Cj , Tk)

−1, if PopEval(Ci, Tk) < PopEval(Cj , Tk)

where i > j, Ci and Cj are candidate generations, and Tk is a test population.
Candidate-based comparators are defined similarly:

Definition 3. PCCk
(Ti, Tj) =







1, if PopEval(Ck, Ti) < PopEval(Ck, Tj)
0, if PopEval(Ck, Ti) = PopEval(Ck, Tj)

−1, if PopEval(Ck, Ti) > PopEval(Ck, Tj)

where i > j, Ti and Tj are test generations, and Ck is a candidate population.
Intuitively, a population comparator reflects directionality of change over time.

The candidate-population performance at generation i is defined to be the
average of the population comparators between the newest (ith) candidate popu-
lation and the oldest candidate population currently in the memory, with respect
to all test populations currently in memory:

Definition 4. CandPerformancei =

∑

Tk∈T

PCTk
(Ci,Coldest)

|T |

Similarly, the test-population performance at generation i is defined to be the av-
erage of the population comparators between the current test population and the
oldest test population in the memory, with respect to all candidate populations
currently in memory:

Definition 5. TestPerformancei =

∑

Ck∈C

PCCk
(Ti,Toldest)

|C|

The PC-Performance is simply the average of these two performance levels:

Definition 6. PCPerformancei = CandPerformancei+TestPerformancei

2

The PC-Perfomance method generates one scalar value per generation for each
population, ranging from -1.0 (when the eldest population outperforms the cur-
rent population in every possible way with respect to the memory) to 1.0 (when
the current population outperforms the eldest population in every possible way
with respect to the memory).

By restricting interest to the far reaches of the memory, a population-differential
analysis does not reward or penalize for localized variability. The only change
that is of interest is that between the population’s ancestry and its current state.
Additionally, this keeps the computational complexity of calculating performance
low. (For a memory of size n, only 2n comparisons need to be calculated.) In-
tuitively, these performance measures reflect the directionality of change over
available memory.



5 Results

In order to demonstrate the value of the population-differential performance
monitor, the first four experiments presented use numbers game variants as a
domain.11 These domains are trivially simple and, more importantly, offer an
acceptable external metric12 that can be used to support or challenge the PC-
Performance monitor. The fifth experiment uses the Rock-Paper-Scissors game
as a domain, showing that the performance monitor can provide useful insight
into games with no such external metric.

We examine five known coevolutionary behaviors here, which are labeled
as follows in the figures below: arms-race dynamics, lock-in failure, variations,

disengagement, and cycling. For each of the five, we describe what an idealized
PC-Performance profile of each behavior ought to be, then we examine actual
sample runs to see how they compare. For each sample, a PC-Performance chart
is presented along with the corresponding Objective Fitness chart and AOG-
based grayscale map. All three graphs share the same scale along the x-axis,
allowing the reader to visually align the data from all three images for simple
visual analysis.

5.1 PC-Performance Behavior Profiles

Interpretation of such performance graphs with respect to coevolutionary success
and failure can be profiled as follows: An arms-race dynamic would yield a
sustained PC-Performance value at or near 1, as both populations consistently
do better later in time than they did earlier in time. Lock-in failure would yield
a sustained value near -1, as the opposite is generally true, with the exception of
localized progress. Variation is merely meant to describe a simulation for which
the objective fitness graph switches direction several times. We would expect the
performance monitor to register above zero on the inclines and below zero on
the declines. Disengagement will yield a sustained value at zero once gradient is
lost. Cycling will be visually apparent in the grayscale memory map.

Note that in all cases, the PC-Performance monitor will lag behind behav-
iors in the simulation by a fixed distance, determined by the size of the sliding
memory-window.

5.2 Discussion of Results

Each of the above theoretic performance profiles can now be compared to cor-
responding empirical samples.

For the arms-race dynamic example in Fig. 4, we include a run from a Pareto
hill-climbing algorithm [1] attempting the compare-on-one numbers game [4].

11 In these games, tests and candidates are each a point on a two-dimensional grid.
Mutation simply moves an individual to a nearby location. Evaluation of candidate-
test pairs varies by game variant, and details are included in [10].

12 The objective fitness of a population is defined to be the average sum of individuals’
x- and y-coordinates.



Objective fitness in both populations steadily improves, and this is accurately
characterized by the monitor. The AOG memory map reveals a remarkably
smooth gradient. Note that progress in the two populations looks similar to
the monitor, despite the varying rates revealed in the objective fitness graph.
They appear equally good to the monitor because PC-Performance suggests the
direction – and not rate – of change over time.

The lock-in failure of Fig. 5 was from a fitness-proportional coevolution-
ary algorithm attempting the intransitive numbers game. A short run of ini-
tial progress is recognized by the monitor, which is gradually replaced by a
near-bottom value as the two populations settle in to a locally-improving but
globally-detrimental pattern. Note how this pattern visually resounds in the
grayscale map. Also, note how the 100-generation bounded-memory size causes
a 100-generation lag between activity in the simulation (visible in the objective
fitness graph) and the values in the performance monitor.

The variation evident in Fig. 6 was generated by a fitness-proportional co-
evolutionary algorithm again attempting the intransitive numbers game. Note
that the mid-level value (settling between 0 and 1) of the monitor at the conclu-
sion suggests that the final upswing was characterized by learning-and-forgetting,
rather than a true arms race. The memory map image supports this, showing
that only one of the two populations could retain its behavior over time.

The disengagement that occurs in Fig. 7 was generated by a fitness-proportional
coevolutionary algorithm again attempting the intransitive numbers game. The
disengagement is recognized once the memory-window slides beyond it, leaving
a continuous trail at zero progress beyond that. The memory map is particularly
notable here, as the notion of loss-of-gradient is so visually apparent.

Finally, the cycling visible in Fig. 8 results from a coevolutionary hill-climbing
algorithm attempting the game of Rock-Paper-Scissors. The intransitive superi-

orities inherent in this game lead the algorithm in circles (a Pareto hill-climber,
for contrast, does not fall into such cycles.) The PC-Performance monitor stays
near zero, and any sort of smoothing would make this even more apparent. Note
that since this domain has no suitable objective fitness metric, no such graph can
be included here. A sub-section of the AOG-memory map is enlarged to display
the visual appearance of cycles in memory.

6 Conclusion

The AOG-based framework introduced here seems particularly well-suited to
the coevolutionary monitoring task, as it is sensitive to the entire spectrum of
known anomalies detailed by Watson and Pollack in [10]. The major drawback
of switching from a BOG-based technique to an AOG-based technique is the
additional computational burden, but this can be alleviated through design of
the memory-maintenance policy. The population-differential monitor then builds
on this AOG-based data, just as the Master and Dominance Tournaments build
on BOG-based data. The richness of the results is significant, as illustrated
in the figures. With an ability to detect these behaviors, we will be able to



Fig. 4. Arms-race dynamics. Pareto
hill-climbing algorithm on compare-on-
one numbers game domain.
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Fig. 5. Lock-in failure. Fitness-
proportional coevolutionary algorithm
on intransitive numbers game domain.
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Fig. 6. Variation. Fitness-proportional
coevolutionary algorithm on intransi-
tive numbers game domain.
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Fig. 7. Disengagement. Fitness-
proportional coevolutionary algorithm
on intransitive numbers game domain.
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Fig. 8. Cycling. Coevolutionary hill-climbing algorithm on Rock-Paper-Scissors do-
main.
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apply coevolution to more complex unknown tasks, refining parameters while
monitoring PC-performance. The ability to identify and track arms races, Red
Queen effects, and disengagements may lead to an ability to adaptively control
coevolution while maintaining continuous learning.
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