Towards Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal Jordan B. Pollack ari@cs.brandeis.edu

Brandeis University DEMO Lab, Computer Science Department

AAAI 2005 Fall Symposium: Coevolutionary and Coadaptive Systems

★ E ► ★ E ► E E < 2000</p>

Outline

Motivation

Introduction Best-of-Generation (BOG) Techniques

2 Techniques

All-of-Generation (AOG) Techniques Population-Differential Metric

Observations & Results

Profiles: Coevolutionary Successes & Failures Examples: Coevolutionary Successes & Failures

Motivation		Observations & Results	
••••• •••	00000	00 00000	

Motivation

Coevolutionary Fitness

• No objective fitness function required

★ ■ ▶ ★ ■ ▶ ■ ■ ■ の Q @

A D > A P

Motivation Tech	niques Obse	ervations & Results Summary
0000 00	00 00 000	00

Motivation

Coevolutionary Fitness

- No objective fitness function required
- No objective fitness function available

ヨト イヨト 三日 のへの

Motivation lechnic	ues Observations & Results	s Summary
•000 00 00000	00 00000	

Motivation

Coevolutionary Fitness

- No objective fitness function required
- No objective fitness function available
- How to best monitor performance?

▶ < ∃ ▶ ∃ = <> <</p>

Notivation recinity		uits Summary
00000 00 00000	00 00000	

Notation

From (Bucci & Pollack)

• Candidate population C, Test population T

Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal, Jordan B. Pollack

Image: Image:

★ ■ ▶ ★ ■ ▶ ■ ■ ■ の Q @

Motivation		Observations & Results	Summary
0 00 00	00000	00 00000	

Notation

From (Bucci & Pollack)

- Candidate population C, Test population T
- Any candidate can be evaluated against any test.

ヨト イヨト ヨヨ のへの

Motivation		Observations & Results	Summary
0 00 00	00000	00 00000	

Notation

From (Bucci & Pollack)

- Candidate population C, Test population T
- Any candidate can be evaluated against any test.
- Outcome is an element of some ordered set R

▶ ▲ 프 ▶ 프 = ● ○ ○ ○

Motivation		Observations & Results	Summary
0 00 00	00000	00 00000	

Notation From (Bucci & Pollack)

- Candidate population C, Test population T
 - Any candidate can be evaluated against any test.
 - Outcome is an element of some ordered set R R = {CandidateFailedTest < CandidateTiedTest < CandidatePassedTest}

▶ ▲ 프 ▶ 프 = ● ○ ○ ○

Generation-Table Analysis

CIAO data (Cliff and Miller)

Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal, Jordan B. Pollack

ELE DOG

프 🖌 🖌 프

Generation-Table Analysis

- CIAO data (Cliff and Miller)
- Dominance Tournament (Stanley and Miikkulainen)
- Master Tournament (Nolfi and Floreano)
- Hall-of-Fame (Rosin and Belew)

-1= nac

Motivation	Observations & Results	
0000		

Best-of-Generation (BOG) Approach

★ E ► ★ E ► E E < 2000</p>

"Instantaneous Fitness"

"Red Queen" Dynamics

Candidate Passed Test Candidate Tied Test Candidate Failed Test

ELE DOG

A D > A P

"Instantaneous Fitness"

"Red Queen" Dynamics

Candidate Passed Test Candidate Tied Test Candidate Failed Test

Simulations may drastically differ, yet may generate identical "instantaneous fitness" profiles

< □ > < 同

1= 990

Best-of-Generation (BOG) Approach

Low computational cost

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Best-of-Generation (BOG) Approach

- Low computational cost
- Definition of "best" is pre-defined

Metrics and Visualizations Sensitive to Coevolutionary Failures

Best-of-Generation (BOG) Approach

- Low computational cost
- Definition of "best" is pre-defined
- Only reflects behavior of "best" individuals

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

Best-of-Generation (BOG) Approach

- Low computational cost
- Definition of "best" is pre-defined
- Only reflects behavior of "best" individuals
- High sensitivity to coevolutionary success
 Low sensitivity to coevolutionary failure

00

Best-of-Generation (BOG) Approach

- Low computational cost
- Definition of "best" is pre-defined
- Only reflects behavior of "best" individuals
- High sensitivity to coevolutionary success Low sensitivity to coevolutionary failure
- Not appropriate for examining failures in coevolution. All-of-Generation (AOG) based analysis is a response...

ヨト イヨト ヨヨ わゆゆ

	Techniques	Observations & Results	
0000 00	00000	00 00000	

All-of-Generation: Population-Grained Evaluation

All Candidates Passed All Tests
 All Candidates Failed All Tests

ヨト イヨト ヨヨ のへの

	Techniques	Observations & Results	
0000 00	00000	00 00000	

All-of-Generation: Population-Grained Evaluation

All Candidates Passed All Tests
 All Candidates Failed All Tests

Here: simple average of outcome values

11 900 E 1

프 🖌 🛪 프 🕨

BOG vs. AOG Differentiating Example

< □ > < 同

ELE DOG

BOG vs. AOG Differentiating Example

11 900 E 1

BOG vs. AOG Differentiating Example

ELE DOG

Summary

BOG vs. AOG Differentiating Example

Which is preferable?

★ ■ ▶ ★ ■ ▶ ■ ■ ■ の Q @

A D > A P

• "How does the most recent generation compare to the least recent generation, with respect to each generation of the other population? And vice versa?

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

- "How does the most recent generation compare to the least recent generation, with respect to each generation of the other population? And vice versa?
- The resulting set of pairwise comparisons (of PopEval values) are binned according to the directionality of change.

★ E ► ★ E ► E E < 2000</p>

- "How does the most recent generation compare to the least recent generation, with respect to each generation of the other population? And vice versa?
- The resulting set of pairwise comparisons (of PopEval values) are binned according to the directionality of change.
- Bin-counts determine value (at time t) ranging from +1 to -1.

三日 のへの

- "How does the most recent generation compare to the least recent generation, with respect to each generation of the other population? And vice versa?
- The resulting set of pairwise comparisons (of PopEval values) are binned according to the directionality of change.
- Bin-counts determine value (at time t) ranging from +1 to -1.

1= nac

	Observations & Results	
0000 00	00 00000	

Simple domains that produce interesting behavior.

三日 のへの

- Simple domains that produce interesting behavior.
- Objective metric exists, allowing for verification of subjective (population-differential) metric.

★ E ► ★ E ► E E < 2000</p>

- Simple domains that produce interesting behavior.
- Objective metric exists, allowing for verification of subjective (population-differential) metric.
- 1D variant: Individuals are points on a line. The higher value wins.

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

- Simple domains that produce interesting behavior.
- Objective metric exists, allowing for verification of subjective (population-differential) metric.
- 1D variant: Individuals are points on a line. The higher value wins.
- "Intransitive" variant: Individuals are points on 2D grid. The "winner" has the higher value in dimension for which the two are closer.

- Simple domains that produce interesting behavior.
- Objective metric exists, allowing for verification of subjective (population-differential) metric.
- 1D variant: Individuals are points on a line. The higher value wins.
- "Intransitive" variant: Individuals are points on 2D grid. The "winner" has the higher value in dimension for which the two are closer.
- "Compare-on-one" variant: Individuals are points on 2D grid. The "winner" has the higher value in test's greater dimension.

◆□▶ ◆冊▶ ★ヨ▶ ★目★ 少々⊙

Profiles of Coevolutionary Failures

Sought to reproduce common coevolutionary behaviors:

Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal, Jordan B. Pollack

Profiles of Coevolutionary Failures

Sought to reproduce common coevolutionary behaviors:

• "arms-race dynamic"

Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal, Jordan B. Pollack

Profiles of Coevolutionary Failures

Sought to reproduce common coevolutionary behaviors:

- "arms-race dynamic"
- "lock-in failure"

Profiles of Coevolutionary Failures

Sought to reproduce common coevolutionary behaviors:

- "arms-race dynamic"
- "lock-in failure"
- "variation"

Profiles of Coevolutionary Failures

Sought to reproduce common coevolutionary behaviors:

- "arms-race dynamic"
- "lock-in failure"
- "variation"
- "disengagement" (due to lack of gradient)

★ E ► ★ E ► E E < 2000</p>

Profiles of Coevolutionary Failures

Sought to reproduce common coevolutionary behaviors:

- "arms-race dynamic"
- "lock-in failure"
- "variation"
- "disengagement" (due to lack of gradient)
- "cycling"

	Observations & Results
0000 00	00 ●0000

Behavior Example: Arms-Race Dynamics

Ari Bader-Natal, Jordan B. Pollack

	Observations & Results	
	00000	

Behavior Example: Lock-In Failure

Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal, Jordan B. Pollack

	Observations & Results
0000 00	00 00●00

Behavior Example: Variation

		Observations & Results	
0000	00000	00	
		00000	

Behavior Example: Disengagement

	Observations & Results
0000 00	00 0000●

Behavior Example: Cycling

Metrics and Visualizations Sensitive to Coevolutionary Failures

▲ 문 ▶ ▲ 문 ▶ 로 ⊨ ♥ ♥ ♥

Summary

- BOG-based analysis is good for monitoring successes but not so good for monitoring failures
- AOG-based analysis uses information on the entire population (not just the "best")
- The "Generation-Table approach" to coevolutionary analysis continues to yield useful techniques.

◆□▶ ◆冊▶ ★ヨ▶ ★目★ 少々⊙

	Observations & Results	Summary
0000 00	00 00000	

Thank you

Thank you!

Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal, Jordan B. Pollack

토▶★토▶ 토|비 ���♡

Towards Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal Jordan B. Pollack ari@cs.brandeis.edu

Brandeis University DEMO Lab, Computer Science Department

AAAI 2005 Fall Symposium: Coevolutionary and Coadaptive Systems

★ E ► ★ E ► E E < 2000</p>

AOG Memory Policies to Reduce Computation

Metrics and Visualizations Sensitive to Coevolutionary Failures

Ari Bader-Natal, Jordan B. Pollack

Memory Size Can Affect Interpretation

