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Abstract. Games provide a promising mechanism for intelligent tutor-
ing systems in that they offer means to influence motivation and structure
interactions. We have designed and released several game-based tutoring
systems in which students learn to identify the best game strategies to
adopt, and, in doing so, create for each other increasingly productive
learning environments. Here, we first detail the core game underlying
our deployed systems, designed to leverage human intelligence in tutor-
ing systems through the tutor’s identification of “appropriate” challenges
for their tutee. While this game works well for task domains in which
problem difficulty is known, it cannot be applied to domains if nothing
is known about a problem beyond its correct solution. We introduce a
second, more robust, game here capable of addressing this larger set of
task domains. By incorporating player-generated probability estimates
(in place of a difficulty metric), we show that a game can be designed
to simultaneously elicit best-effort responses from tutees, honest state-
ments of probability estimates from tutees, and appropriate challenges
from tutors. We derive a set of constraints on the parameterized version
of this game necessary for rational players to converge on this “Teacher’s
Dilemma” learning environment. Beyond providing a foundation for fu-
ture tutoring systems, this work offers a new mechanism with which to
simultaneously leverage and enhance the knowledge of peer learners.

1 Introduction

Games provide a promising mechanism for learning, in that they offer means to
engage students, enable realistic simulations, and provide motivational structure
[1-5]. Over the past several years, we have designed and released several game-
based learning systems. The focus of these has been on games in which student
grapple to identify the most effective strategies for play, and in doing so, they —
perhaps unknowingly — create for one another increasingly productive learning
environments.

In this paper, we first detail the core game underlying our deployed systems,
designed to leverage human intelligence in tutoring systems through the tutor’s
identification of “appropriate” challenges for their tutee. We identify one short-
coming of the model: it cannot be applied to domains if nothing is known about a
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problem beyond its correct solution, and introduce a second, more robust, game
that compensates for the lack of a difficulty metric by incorporating player-
generated probability estimates. We then show how a game can be designed
to simultaneously elicit best-effort responses from tutees, honest statements of
probability estimates from tutees, and appropriate challenges from tutors. The
constraints on a parameterized model of this game are derived such that these
criteria will always be met, yielding a robust second model for peer-driven learn-
ing in games.

2 Context: A Game-theoretic approach to learning games

We approach this question by focusing on the potential of games to motivate and
direct the actions of learners. We use the framework of game theory [6] (and draw
also from the literature in mechanism design [7,8]) to describe, construct, and
analyze multi-player games that, at equilibrium, provide environments highly
conducive to learning. Each of these games forces peer-tutors to try to under-
stand the abilities of their tutee and challenge them appropriately, by offering
them what we call a “Teacher’s Dilemma.” The resulting sustained engagement
with appropriate challenges provides the tutees opportunity to learn. One key
assumption that we make in approaching game-driven learning is that players
will act rationally, adopting strategies that they believe will maximize their util-
ity (as measured by their score in the game). While this assumption may be
entirely reasonable for game interactions among autonomous agents [9], it is not
necessarily appropriate for human players. But while many of the results from
game theory are lost when players are no longer assumed to be fully rational,
a body of work on Evolutionary Game Theory has recovered many of these
concepts by replacing rationality with repeated play over time [10]. While we
assume rationality and only analyze one-shot games in this paper, the tutoring
system in which we implement these games involve repeated play among pairs of
players, and we believe that the dominant strategies identified below will remain
as such for sub-rational players repeatedly playing with the same partner over
time.

While game theory may model external decisions as due to Nature, and
provides a construct — the “trembling hand” — to model situations in which a
player does not have full control over the actions that they select [10], neither
of these is entirely sufficient to represent the situation of the Student. While a
Student may not have the ability to submit a guaranteed-correct response, they
always can select a guaranteed-incorrect response. More generally, the Student’s
available strategy options are limited by their ability in one direction but not in
the other. Depending on how the payoff functions are formulated, the Student
may have a strategic reason to do just this, and purposefully act “below” their
abilities, as a form of “gaming the system” [11,12]. The games analyzed below
have been designed both with these notions of ability-limited play and strategic
under-performance in mind.
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Fig. 1. TD-D: A difficulty-based Teacher’s Dilemma game. The Teacher first selects a
challenge from the space of legal challenges. The Student select a response from the
space of legal responses. The accuracy of the response is assessed (objectively), and
the Teacher and Student are rewarded as a function of problem difficulty and response
accuracy.

2.1 TD-D: The difficulty-based Teacher’s Dilemma game

Our current tutoring systems incorporate a game played between two players,
in which one plays the role of Teacher and the other plays the role of Student.!
The Teacher selects a challenge, the Student attempts to solve it, and both
players receive payoffs based on challenge difficulty and response accuracy. The
extensive form representation of this game, which we will refer to as TD-D, is
shown in Figure 1. We present this game primarily as a point of reference for
the following sections. In this game, there is an objective (and assumed-correct)
notion of problem difficulty: “Problem difficulty” D, is an externally-defined
estimate of the probability that the Student will provide an incorrect response
to the challenge. Furthermore, we assume a “well-defined” task domain: for every
legal challenge ¢ and legal response 7, accuracy A can be assessed (i.e. A, . is
known.) The task domain, like with any Intelligent Tutoring System, is likely
restricted to one topic that the students are trying to learn.

! These types do not correspond to classroom roles. In many of our existing tutoring
systems, the two peers are constantly reversing roles. The names are only meant to
indicate which player poses challenges and which player responds.



Definition 1. An “appropriate challenge” for a Student is defined in terms of
the probability of the Student providing a correct response to it. Here, we let
Poppropriate[Ar.c = 1] = 0.5 (although other values can be adopted, given minor
modifications to the players’ payoff functions.)

Definition 2. A two-player game between a Teacher and a Student is considered
a “Teacher’s Dilemma” if the strategy that mazimizes the Teacher’s expected
utility is to always provide the Student with “appropriate challenges.”

While we have previously argued that the structure of the difficulty-based game
is sufficient to converge on appropriate challenges being posed, this argument
assumes the existence of an accurate difficulty metric. While the existence of such
a metric may be reasonable to assume or approximate for some task domains,
it remains a limitation on the game’s value for tutoring system applications.
In response, we now introduce a second game, designed to provide a Teacher’s
Dilemma without the need for any external difficulty metric.

3 TD-£&: An expectation-based Teacher’s Dilemma game

The intuition behind the expectation-based game that we will discuss is that
the missing problem “difficulty” information (i.e. probability-based estimation
of anticipated response accuracy) can come from a different source: the players
themselves. Where TD-D assumed that the game can accurately assess difficulty
and accuracy, TD-£ instead assumes that the game can only assess accuracy, but
that the players themselves can express a probability of expected accuracy. For
the Teacher, this amounts to answering a student modeling question: “With
what probability do you expect the tutee to accurately respond to the challenge
question?” For the Student, it involves metacognitive reasoning: “With what
probability do you believe your response to the challenge question is accurate?”
However, the inherent complication in asking players to answer such questions
is that players are free to misrepresent their true beliefs, and can be expected to
do so whenever it provides strategic advantage. We therefore define two different
notions of expectation:

1. A player’s “true expectation” £ is an estimate of the probability that the
Student’s will be able to provide a correct response to the challenge, as
privately believed by that player.

2. A player’s “stated expectation” £ is an estimate of the probability that the
Student’s will be able to provide a correct response to the challenge, as
publicly stated by that player during the course of game-play.

In order to show that an expectation-based game is a Teacher’s Dilemma
(i.e. that the Teacher is motivated to choose appropriate challenges for the Stu-
dent), we must first show that players have no incentive to misrepresent their
true expectations when stating them. We must also be sure that Students are
not purposefully providing known-incorrect responses (as discussed in Section
?7?) in order to increase the accuracy of their stated probability-expectations.



Only if both of these conditions are met can we look at the Teacher’s incen-
tives in order to determine whether the game is a Teacher’s Dilemma. Thus, an
expectation-based Teacher’s Dilemma game must simultaneously motivate three
sub-strategies:

1. Best-effort responses: The Student is motivated to respond to the best of
their abilities (i.e. they will never benefit from providing an incorrect re-
sponse if the correct response is known.) A Student’s payoff function 7y is
said to be “effort-dominant” if, when asked to provide a response to a posed
challenge, the strategy that produces the highest expected utility is for the
Student to always provide their “best-effort” response (i.e. The Student has
no alternative response for which they expect a higher likelihood of accu-
racy.)

2. Honest statement of expectations: Both the Teacher and the Student are mo-
tivated to state their true expectations (i.e. they never benefit from inten-
tionally mis-representing their true beliefs.) A Student’s payoff function 7
is said to be “truth-dominant” if, when asked to state their estimated prob-
ability of response accuracy, the strategy that always produces the highest
expected utility is always honestly sharing one’s true beliefs.

3. Appropriate challenges: The Teacher should be motivated to select challenges
of “appropriate difficulty” for their tutee. A Teacher’s payoff function m; is
said to be “appropriateness-dominant” if, when asked to select a challenge to
pose to their tutee, the strategy that always produces the highest expected
utility is select the one for which the Student expects to have a 50% likelihood
of answering correctly.

3.1 Examples: Two expectation-based games

Figures 2 and 3 show two expectation-based games, differing only in the player
payoffs. The first is not a Teacher’s Dilemma, the second is. Figure 2 was designed
to mimic the payoffs in the difficulty-based Teacher’s Dilemma game shown in
Figure 1. In this version, we can see that while the Student receives a higher
payofl for correct responses (and is thus motivated to answer correctly whenever
possible), the Student is provided with no motivation to state their expectations
of problem difficulty honestly. The Student’s payoff is entirely independent of
the Student’s stated expectation. As a result, there is no reason to believe that
the statement is anything other than randomly generated, and so the Teacher’s
payoff structure (which is dependent on the Student’s stated expectation) no
longer motivates appropriate challenges. This game, therefore, does not meet the
criteria of a Teacher’s Dilemma. In Figure 3, on the other hand, the Student’s
payoff still favors correct responses (and thereby favors best-effort responses.)
It is dependent on the Student’s stated expectation, but in such a way that
the Student’s highest expected utility results from honestly stating their true
expectations (i.e. & = &,.) This can be seen in Figure 5. For the Teacher, the
expected utility of selecting an appropriate challenge (for which & = 0.5) is
higher than any other selection, as seen in Figure 4. Thus, all three conditions
are satisfied and the game meets the criteria of being a Teacher’s Dilemma.
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Fig.2. Example Game &-1: An
expectation-based game that, despite
it’s similarity to the TD-D game
shown in Figure 1, does not create a
Teacher’s Dilemma.

Fig.3. Example Game £&-2:
expectation-based game that
create a Teacher’s Dilemma.
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Fig. 4. The Teacher’s expected utility for Example Game £-2 (in Figure 3) is a function
of their true expectation and the Student’s stated expectation of response accuracy.
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Fig. 5. The Student’s expected utility for Example Game £-2 (in Figure 3) is a function
of their true and stated expectations of response accuracy.
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Fig. 6. TD-E: A parameterized expectation-based Teacher’s Dilemma.

3.2 Necessary conditions for a parameterized TD-£ game to become
a Teacher’s Dilemma

Figure 6 shows a generalization of Example Game £-2 (in Figure 3.) The payoffs
in this game are parameterized, to allow for some flexibility in the actual payoff
values.
. w1 + wa if .Ar?(; =0 (1)
k w1(1 —gs)—f—’LUQ if .Ar?(;: 1

(2)

B wsEs? + ws it A, .=0
T ws(1 = &) 4wy +ws if A =1

By definition of true expectation, the Teacher believes that P[4, . = 1] = &
and P[A, . = 0] = 1 — &, and the Student believes that P[4, . = 1] = & and



P[A,. = 0] = 1 — &,. The expected utility of each player can be stated as a
function of these probabilities and this payoff, as shown below and in Figures 4
and 5.

For the Teacher:

E7r P [Ar c — 7/] (7Tt|Ar,c = Z)
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) (w15 + ws) + (5;) (wy (1 — &) + ws)
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For the Student:

E,. P A, =i (my| Aye = i)

||
i
-
(=)

(1 s) (wsE2 +ws) + (&) (’LU3 (1—E)* +ws+ w5)
= 52 — 23 EEs + w3 + waks + ws (4)

We can show that for TD-E, the tutee’s payoff function 75 can be truth-

dominant and can be effort-dominant, and the tutor’s payoff function 7; can be
appropriateness-dominant. When the conditions necessary for each of these are
simultaneously satisfied, TD-£ becomes a Teacher’s Dilemma. We now show the
conditions necessary for this to happen.

Theorem 31 w; in TD-E is truth-dominant if ws < 0, regardless of the values
of all other w;.

Proof. Depending on the value of ws, the conditions required to satisfy this fall
into one of three cases:

(i)

When ws < 0, the expected utility value surface (as a function of stated and
true expectations) opens downward. The maximum expected utility for each
true expectation occurs when the partial derivative of E._ (from Equation
4) with respect to & is zero:

OE..
0= 9E,
0 = 2wsEs — 2wsEs
E =&, (5)

The Student attempting to maximize expected utility will therefore always
state their expectation (&) exactly as they truly believe it (£,.) Thus, 74 is
truth-dominant.

When ws =0, E;, = w4Es + ws. Since this is independent of &, there is no
strategic value in truthfully stating &. In this case, 75 is not truth-dominant.
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(iii) When w3 > 0, the expected utility value surface (as a function of stated and
true expectations) opens upward, rendering the & = &, from case (i) into
a minimum rather than a mazimum. As such, s is not truth-dominant in
this case.

Theorem 32 7, in TD-E is effort-dominant if wy > wsz, wy > 0, and wz+w4 >
0, regardless of the values of all other wj.

Proof. Given a posed challenge c, call the tutee’s potential response that they
believe most likely to be correct their “best-effort” response, rgg. Call another
response that they believe less likely to be correct their “less-effort” response,
rrg. In the expectation notation used above, we denote this as SS(TLE,C) <
&, (rBE,c). We abbreviate this by using a tilde to denote “less-effort,”so we can
restated this as & < &. A payoff function is effort-dominant if the expected
utility associated with a “best-effort” response is greater than that associated
with any “less-effort” response (i.e. Ex, (rpg,c) > Ex, (rLE, c).) We can compare
these expected utility values for the payoff function from Equation 2 in order
to identify the conditions that must hold for the Student’s payoff to be effort-
dominant:

E. (ree,c) > Ex (rLEe,c)

Ww3E2 — 2w3E €, + w3Es + Wik + w5} > {w3552 — 2w3EsEs + w3 + was + ws

(—2wsEs + w3 + wy) (5; - 55) >0 (6)

~ Given that E, > &, we can say that there exists some A > 0 such that
Es = Es + A. Substituting this into 6, we get:

(—2wsE, + w3 + wy) ((5; +A) - 5;) >0

(—2ws3&s + w3 +wg) A >0

Wy < # (7)

Depending on the sign of ws, the conditions required to satisfy this inequality
fall into one of three cases:

(i) When ws < 0. For this to hold for all possible values of &, we can solve
Equation 7 for the value of & that most restricts the inequality, which, in
this case, is & = 0. Rearranging the terms reveals that ws + wy > 0 must
hold.

(ii) When ws =0, wq > 0 must hold.

(iii) When ws > 0. For this to hold for all possible values of &, we can solve
Equation 7 for the value of £ that most restricts the inequality. Here, that
is & = 1. Rearranging the terms reveals that w3 < w4 must hold.
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Theorem 33 w; in TD-E is appropriateness-dominant if players’ expectations
agree and wy > 0, regardless of the values of all other w;. (If players’ expecta-
tions differ and wy > 0, TD-E converges on becoming appropriateness-dominant
through repeated play between a pair of players, if both players update their ez-
pectations over time to reflect observed accuracy outcomes.)

Proof. The optimal Teacher strategy depends on the relationship between the
accuracy expectations of the Teacher and Student:

— If the Teacher believes that they will agree with the Student’s stated ex-
pectation of response accuracy (i.e. & = &s), the conditions required vary
according to the value of w;:

(i) When wy > 0. Since the Teacher and Student agree on the expectation of
response accuracy, we can rewrite the Teacher’s expected utility purely
in terms of their own expectations, and then solve for the level that
corresponds with the highest expected utility:

Er =w (Et + & — 2&58) + we = wq (2& — 2&2) + wo

dE .
T ()= 2 4E

dé, w1 ( t)
& =05 (8)

In this case, the optimal strategy is to select challenges for which & =
0.5, making 7; appropriateness-dominant.

(il) When w; = 0, expected utility varies only with weight ws, and is thus
not sensitive to challenge appropriateness.

(iii) When wy > 0, the case is similar to when wy < 0, accept that & =05
marks the minimum rather than maximum expected utility. Thus, in
this case m; is not appropriateness-dominant.

— If the Student states expectations truthfully (i.e. & = &,, but the Teacher
believes that their own expectations will differ with those of the Student
(i.e. & #+ gs), In this case, the Teacher sees the opportunity to out-perform
the appropriateness strategy by selecting the challenge that maximizes the
anticipated difference between & and &,. In this case, either the Teacher or
the Student has provided a poor estimation of expectation, and the results
from the following accuracy assessment will lead that player’s expectations
back in line. In this sense, the one-shot game may not be appropriateness-
dominant, but the repeated game converges to an appropriateness-dominant
payoff, as the two players independently converge on increasingly accurate
expectation models. Feedback from off-diagonal challenges serve to sharpen
either the Teacher’s student model, the Student’s metacognitive skills, or
both.

Theorem 34 TD-£ is a Teacher’s Dilemma when ws < 0, wz + wyq > 0, and
wq > 0.
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Proof. For TD-E to become a Teacher’s Dilemma, three conditions must simul-
taneously hold: m; must be truth-dominant, 75 must be effort-dominant, and
m¢ must be appropriateness-dominant. Since the proof of Theorem 31 requires
that ws < 0 for truth-dominace, we only consider case (i) from Theorem 3.2 for
effort-dominance. Here we require that w3 +w,4 > 0. Finally, for appropriateness-
dominance, we require only that w; > 0. When all three of these conditions are
met, the resulting TD-E game is necessarily a Teacher’s Dilemma. The Teacher’s
Dilemma example presented in Figure 3 is a form of this game, where w; = 1,
w2=0, w3=—1,w4:2, andw5=1.

4 Conclusion

In showing that the payoff functions for the TD-£ could be restricted in such
a way as to arrive at a Teacher’s Dilemma, we surpassed one of the significant
limitations of the prior TD-D game: the need for an existing accurate difficulty
metric. We were able to organize the game in such a way as to obtain approxima-
tions of this information from the players themselves. Errors in their estimations
serve as opportunities for learning, and dissipate as that learning occurs. The
next frontier for generalizing the model would be to remove the only remaining
assumption: that the accuracy of any response to any challenge can be assessed.
In future work, we plan to build a new Teacher’s Dilemma game in which accu-
racy is also effectively assessed by the participating players. In doing so, we will
have achieved a very flexible and general framework for peer-driven learning,
equally applicable for tutoring systems in well-defined and ill-defined domains.
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